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Historically, the discovery of novel drugs has been led
by chemistry and pharmacology. With the advent of
genomic sciences, however, biology has established
itself as the main driver. Drug-discovery programs
typically start with the identification of suitable drug
targets (Fig. 1). Such targets are biomolecules that, in
most cases, are proteins such as receptors, enzymes
and ion channels. During the stepwise process of
target validation, a sufficient level of ‘confidence’ has
to be established that the target is of relevance to the
disease under study and modulation of the target will
lead to effective disease treatment. The initial steps of
target validation are usually obtained in vitro and in
animal models but the ultimate validation can be
achieved only in clinical experiments in humans. After
initial target validation has been obtained,
modulators of the target have to be identified. Such
modulators can be agonists or antagonists in the case
of receptors, activators or inhibitors of enzymes, and
openers or blockers of ion channels. This phase of so-
called lead identification starts with the design and
development of a suitable assay to monitor the target
under study. Subsequently, high-throughput
screening (HTS) exposes the target to a large number
of chemical compounds (typically in the order of 105)
that increasingly come from high-speed parallel and
combinatorial synthesis1. Active compounds that
demonstrate dose-dependent target modulation are
called lead compounds when a certain degree of
selectivity for the target under study can be shown and
the first positive results in animal models are
obtained. Such lead compounds are optimized in terms
of potency and selectivity as well as physicochemical
properties, and their pharmacokinetic and safety
features are assessed before they can become
candidates for drug development. Although most of
the process of early pharmaceutical research relies
predominantly on experimental work in the
laboratory, the computer has become increasingly

important. This review briefly describes the areas
where in silico approaches are already operating in
early pharmaceutical research and contribute
significantly to drug discovery.

Target discovery, target identification and validation

One of the most important areas that in silico
approaches are operating in is target discovery. Here,
the cross-disciplinary science of bioinformatics has
become essential. In 1996, a survey showed that there
were 483 molecular targets of current therapies 
(45% receptors, 28% enzymes, 5% ion channels and
2% nuclear receptors)2, but the sequencing of the
human genome will soon be complete, revealing all
potential targets for therapeutic intervention. A
‘working draft’ of the complete human genome
sequence has already been announced (on 26 June
2000, by the Human Genome Project and Celera
Genomics) and estimations for the total number of
genes range from ~34 000 to 140 000 (Ref. 3). On the
basis of bioinformatics analysis, successful target
classes alone, such as receptors, enzymes and ion
channels, can be predicted to amount to ~6500
(Fig. 2), which indicates the huge potential for target
discovery. Not all of these biomolecules will become
drug targets and the big challenge is to select the
most relevant targets for a given disease.

In silico gene-expression analysis
Because only ~3% of the 3 × 109 bases of the human
genome sequence actually encode proteins and 
in silico gene identification is still a difficult task4,
public and private expressed sequence tag (EST)
databases represent an important source for target
discovery. Such databases contain short sequence
information from expressed genes, which allows their
identification and which is taken as indicative of the
encoded proteins5. The value of such databases has
continuously been increased by adding sequences
from different human tissues and states of
development and disease: the public EST databases
alone contain more than 1.6 million human
sequences6. One important use of these databases in
target discovery is to infer relative gene expression
levels, simply by counting how often a given EST
sequence appears in a given cell or tissue. Gene
expression levels are important because the
phenotype is determined by the small portion of genes
that are expressed at any given time in a cell or tissue
type, and changes in gene expression can be
associated with disease. Thus, by comparing levels of
gene expression in normal and disease states, novel
drug targets can be identified in silico. Because these
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databases contain only a limited number of 
sequences for every tissue or cell type 
(typically 5000–10 000), only moderate-to-
highly expressed genes can be obtained. Several 
new in vitro technologies for high-throughput 
gene-expression analysis have been developed
including serial analysis of gene expression (SAGE),
variants of differential display and DNA microarrays
(gene chips), which can overcome the limits of 
EST-based approaches7. However, most important 
is having a suitable database that can be queried
effectively. In silico database searches can then
identify genes that are up- or downregulated in a
disease state, expressed in a particular tissue and
associated with biological and biochemical pathways.
The level of confidence in a target increases greatly if
a disease-specific expression can be demonstrated
and if the target is expressed in a tissue or cell type
that is important for that disease. Routinely, data
obtained in silico have to be confirmed in the
laboratory.

Prediction of gene function
Elucidation of gene function in silico is another
important field for bioinformatics in target discovery.
Typically, a new DNA sequence [which could come
from the above gene-expression analysis (e.g. a gene
upregulated in a diseased tissue)] is first subjected to
similarity searches [e.g. using basic local alignment
search tool (blast)]8 in sequence databases such as the
public GenBank (nucleic acid level) and
SWISS–PROT (protein level), and often its function
can be derived from similarities and homologies to
sequences of known function (Box 1). In about 30–35%
of cases, where no clear functional prediction is
possible, several recently developed computational
methods in comparative genomics can help to deduce
specific functions9,10. Usually a target is much more
attractive if its function can be demonstrated.
Function can point to a biochemical and/or
pathophysiological pathway that the target is involved
in, thus shedding further light on its relevance for the
disease under study. In addition, knowledge of the
function is usually necessary for subsequent
development of an assay to monitor the modulation  of
the target. If the target is found to belong to a highly
‘tractable’ structural class (such as receptors, enzymes
or ion channels), its value increases even more because
these target classes have demonstrated therapeutic
utility. Databases can be mined directly for novel
genes belonging to such ‘tractable’ structural classes.
In this case there is no a priori information regarding
disease relevance associated with the target. Further
disease relevance of a novel target can be derived from
its chromosomal localization using in silico
polymerase chain reaction (PCR)11. If the target is
mapped to or close to a locus that has been associated
with the disease under study, the target itself might be
associated with that disease. 

Lead discovery, lead identification and optimization

Once sufficient ‘confidence’ in a target has been
obtained, lead discovery usually starts with the
development of a suitable assay to monitor the target
and identify modulators (lead identification).
Enormous advances in HTS have been made and
ultraHTS (uHTS) allows the screening of 100 000
compounds on a target per day12; however, if less
compounds could be tested without compromising the
probability of success, the cost and time would be
greatly reduced. 

In silico library design and virtual screening
In silico (or virtual) compound library design operates
to reduce the number of compounds to be tested, and
two basic applications can be distinguished: diversity
and structure-based design. Diversity design aims to
select a smaller sub-library from a larger compound
library in such a way that the full range of chemical
diversity is best represented13. When no structural
information about the target and/or target ligands is
available, diversity design is the method of choice.
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Fig. 1. The process of
pharmaceutical R&D,
often referred to as
discovery process, can
roughly be divided into an
early and late phase. The
early phase is mainly
represented by target and
lead discovery, whereas
the later phase deals
mainly with clinical
evaluation and
development. 
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Fig. 2. Predicted numbers of potential drug targets belonging to
different biochemical classes. The databases OMIM (Online Mendelian
Inheritance in Man; http://www3.ncbi.nlm.nih.gov/Omim/), SWISS-
PROT (http://www.expasy.ch/sprot/sprot-top.html), Incyte LifeSeq Gold
Human Gene Database (http://www.incyte.com/products/lifeseq/
lifeseqgold.html), GeneCards (human genes, proteins and disease;
http://bioinformatics.weizmann.ac.il/cards/), TIGR Human Gene Index
(http://www.tigr.org/tdb/hgi/hgi.html), and GDB (Genome Database;
http://gdbwww.gdb.org/) were mined for the different target classes
using a keyword search in each database. Multiple entries of the same
gene within a database were counted only once to avoid internal
redundancies. Results obtained in the different databases were
compared with each other to avoid redundancies between different
databases. To minimize annotation errors, entries annotated as ‘similar
to’ were disregarded and the private Incyte and TIGR databases (which
are supposed to contain more errors) were used only to confirm results
obtained from the public databases. An average number of 105 human
genes was used for calculations of the numbers for the different target
classes. The indicated numbers of our analysis should be considered as
a rough estimation. 



The different computational methods for compound
selection are mainly based on compound similarity
clustering, grid-like partitioning of chemical space or
the application of genetic algorithms14. The results of
such in silico diversity selections (in silico screening)
are smaller sub-libraries of manageable size with a
high degree of chemical diversity that are then
subjected to HTS in vitro.

Structure-based library design is biased by 
structural requirements for activity on a particular
target and needs prior information of the target
structure (e.g. X-ray or nuclear magnetic resonance).
The goal is to select from existing compound libraries or
to design compounds with three-dimensional
complementarity (i.e. shape, size and physicochemical
properties) to the target-binding site. In the latter case,
new approaches can directly guide the design of virtual
combinatorial libraries, which are first screened in silico
for target complementarity, thus reducing the number of
compounds that will have to be synthesized and tested
in vitro. The combination of structure-based design and
combinatorial chemistry, which is also called
‘combinatorial docking’15, and the different
computational tools and methods have been reviewed

elsewhere16. It can be expected that the hit-rate (rate of
compounds found to be active on the target under study
in a dose-dependent manner) of such focused libraries
will be higher than that of diversity screening. Indeed, a
recent example using the protease cathepsin D showed
the hit-rate of the focused approach to be more than
twice as high as that of diversity screening17.
Unfortunately, most X-ray structures available are for
enzymes because membrane proteins such as receptors
and ion channels are exceedingly difficult to crystallize.
For such targets, a focused approach can still be
employed if ligands (natural or synthetic) are known for
the actual target under study or for the respective target
class. For example, if a common pharmacophore model
can be derived from this information, virtual screening
of compound libraries is performed to define a subset of
biased compounds that is then subjected to HTS in vitro.
Alternatively, in silicoscreening of the pharmacophore
against virtual libraries is carried out and interesting
compounds are synthesized for HTS using
combinatorial chemistry. Both diversity and structure-
based screening can be performed in an iterative
manner. In this case, the results of in vitroHTS are
analysed in silico [e.g.using programs such as SCAM
(statistical classification of the activities of molecules)]18

to derive rules that can be used for the rational selection
of further molecules to be tested in vitro.

Prediction of drug-likeness
When lead molecules have been identified, they have to
be optimized in terms of potency, selectivity,
pharmacokinetics (i.e. absorption, distribution,
metabolism and excretion (ADME)] and toxicology
before they can become candidates for drug
development. Because the high overall attrition rate in
drug discovery is caused mostly by the non-‘drug-
likeness’ of the compounds identified19, the early
analysis in this respect is becoming common practice. 
In silicoapproaches to predict pharmacokinetic
parameters (ADME) were pioneered by Lipinski et al.20

By studying the physicochemical properties of  >2000
drugs from the WDI (World Drug Index, Derwent
Information, London), which can be assumed to have
entered Phase II human clinical trials (and therefore
must possess drug-like properties), the so-called ‘rule-of-
five’ was derived to predict oral bioavailability
(intestinal absorption) of a compound that can be
considered as the major goal of drug development. If the
hydrogen bond donors are <5, hydrogen acceptors <10,
relative molecular weight <500 and lipophilicity
(logP)<5, the compound will probably be orally
bioavailable. Additional methods that need further
validation have recently been reviewed21. For
compounds targeted to the CNS, another important
aspect is blood–brain barrier (BBB) penetration. On the
basis of predictive models described by Abraham etal.22,
a simple two-variable equation has been devised that
allows rapid automated in silicoscreening of (virtual)
libraries for compounds with a potential to cross the
BBB (Ref. 23). The equation is based on the polar surface
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The example below outlines the different steps of in silico analysis and the
software tools that might be used. It should be kept in mind that a relatively
easy case has been chosen to illustrate the procedure because the
complete mouse sequence was already known. 

A mouse sequence was used as the starting point for in silico analysis.
The mouse frizzled-3 protein sequence (SWISS-PROT accession number
Q61086) was employed as a query to search GenBank for human expressed
sequence tags (ESThum subdivision) and human genomic sequences
(HTGShum subdivision) using the TBLASTN tool (http://www.
ncbi.nlm.nih.gov/blast). Homologous EST sequences were retrieved from
the ESThum covering the full coding sequence for the predicted human
frizzled-3 protein (FZD3) and two genomic sequences comprising the entire
coding exon complement of the candidate FZD3 locus were similarly
retrieved. The pairwise alignments between the mouse protein and the
human genomic sequences (dynamically translated in all six reading
frames) were used to deduce the intron and exon positions on the genomic
sequences. Splice site consensus sequence prediction was carried out
using the Neural Network Splice Site Prediction Tool (NNSPLICE0.9;
http://www.fruitfly.org/seq_tools/splice.html). In this way, the genomic
structure of the human FZD3 gene locus, which comprises six exons and
five introns, was defined. The multiple alignment program CLUSTAL W (Ref. b)
(http://dot.imgen.bcm.tmc.edu:9331/multi-align/multi-align.html) was
used for subsequent comparisons of the mouse and human deduced
amino acid sequences. The human protein showed 98% identity with the
mouse protein, thus identifying the novel sequence as the human
homologue of the frizzled-3 receptor. 
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Box 1. Prediction of gene function exemplified by the identification of the

human frizzled-3 (FZD3) seven-transmembrane-domain receptora 



area [PSA (a measure of the solvation potential of the
polar groups)] and the lipophilicity of a compound.
Predicting the toxicity of compounds, another important
aspect, has been reviewed elsewhere24. Sufficient high-
quality and reliable data are not yet available; thus the
predictive ability of the underlying models is limited and
needs further development. In addition to their use in
the lead optimization phase, the computational
techniques described can be used early on to select a
subset of compounds for screening or to guide
combinatorial library design.

Although the virtual library design and virtual
screening approaches described above are integral to
today’s lead discovery, in many cases the whole
corporate compound collection (which might contain

millions of chemical compounds) is used in HTS on a
given target. Whether in silico approaches improve
the identification of high-quality lead compounds and
ultimately the delivery of new drugs to the market
has yet to be evaluated. 

Concluding remarks

In silico approaches contribute significantly to early
pharmaceutical research and are especially important
in target and lead discovery. It can be anticipated that
this contribution will increase substantially in the near
future (Box 2). The need for timely adaptation and
application of in silico approaches in pharmaceutical
research has clearly been recognized and is expected to
improve further the overall efficiency of drug discovery.
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In target discovery, genetics and
polymorphism analysis will have a major
impact. A dense map and database of
single nucleotide polymorphisms (SNPs)
is being developed by public and private
efforts that should allow easier disease-
association studiesa,b. Bioinformatics will
be crucial for data analysis, which is
expected to lead to the identification of
susceptibility genes that have potential
as drug targets, and to contribute to
pharmacogenomics. The latter attempts
to identify the genetic determinants of
different drug responses across a
population, to allow the development of
‘individualized therapy’a. In addition to
the benefits that can be expected for
patients (e.g. fewer or no side-effects and
a better response to the drug treatment),
such drug therapy based on the

individual patient’s genetic profile might
lead to a drastic reduction of cost and
time in clinical trials. As genome
sequences are being completed and
annotated in the ‘post-genomic’ era, the
field of proteomics is becoming
increasingly important. In silico analysis
will be crucial to extract value, especially
in the light of recent advances in protein
microarraysc. 

In lead discovery, major efforts are
being devoted to further refine the
prediction of drug-like molecules and to
predict pharmacokinetic and toxicological
properties of compounds. The latter will
also be based on data obtained from large-
scale gene-expression analysis using DNA
microarrays (toxicogenomics)d. For
example, a particular expression pattern
induced by a novel compound can be

compared with patterns obtained with
known toxic compounds, which might
lead to specific toxicity predictions. Such
predictions should lead to improved
selections of combinatorial and high-
throughput screening (HTS) libraries, thus
increasing the probability of success in
drug discovery.
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Box 2. Future directions
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